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It is argued on the basis of exact solutions for uniform vortices in straining fields 
that vortices of finite cross-section in a row will disintegrate if the spacing is too 
small. The results are applied to the organized vortex structures observed in 
turbulent mixing layers. An explanation is provided for the disappearance of 
these structures as they move downstream and it is deduced that the ratio of 
average spacing to width should be about 3.5, the width being defined by the 
maximum slope of the mean velocity. It is shown in an appendix that walls have 
negligible effect. 

Brown & Roshko (1972, 1974) have demonstrated experimentally the exis- 
tence of organized vortex structures in a turbulent mixing layer. The mean 
spacing 1 obeys the similarity law 

so that organized vortices must disappear or amalgamate as they are convected 
downstream, since they are convected with the mean 0 of the velocities on each 
side of the layer. The annihilation of individual vortices was clearly seen in the 
experiments. 

This phenomenon may be explained qualitatively in terms of the observed 
tendency of neighbouring vortices to rotate about one another (Winant & 
Browand 1974). This rotation is a manifestation of the instability of an infinite 
row of rectilinear line vortices, of strength K and separation 1. It is shown in 
Lamb (1932, 3 156) that for the most unstable disturbance the co-ordinates of 
the vortices are given by 

l c c x ,  (1) 

x, = ml + E cos mneAt, ym = E cos mnehd, (2) 

where h = K71/4E2 (3) 

and E is an arbitrary constant. As the vortices rotate it is assumed that they 
amalgamate, leading to a new array with larger values of 1 and K .  The coalescence 
of neighbouring vortices leads to a larger vortex. Let 6 denote the diameter of 
a vortex structure. Then the increase in S due to this process is, in this explanation, 
also taken to account for the growth of the mixing layer with distance x down- 
stream, since S can be identified with the width of the mixing layer. 
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Support for this view is provided by the numerical experiments of Roberts 
& Christiansen (1972), who examined the motion of a pair of vortices of finite 
cross-section and equal uniform vorticity . The calculation was started with the 
vortices circular and it was found that if the distance between the centres of 
the circles was small enough - and about 1-7 of the diameter of the vortices 
seemed to be the critical distance - the vortices amalgamated. These results are 
not directly applicable to the infinite array of Winant & Browand’s model, but 
they are suggestive. Moreover, the orbits of individual vortices in the finite 
amplitude motion resulting from the initial disturbance (2) are not circular, 
but are such as to reduce the separation of the vortices by a factor + 0.56 at 
their closest, which should tend to promote amalgamation on the basis of the 
ideas to be presented further on. 

This explanation is therefore most plausible and appears to describe well 
many of the observedfeatures. However, difficulties appear on closer examination. 

First, Brown & Roshko did not observe the pairing motion observed by Winant 
& Browand. The reason for this observational discrepancy is not known. The 
distance between individual vortices was comparable to the channel breadth in 
Brown & Roshko’s experiment, but a detailed calculation of the wall effect on 
the motion given in ( 2 )  shows that it is completely insignificant: even when the 
channel breadth is equal to the vortex spacing, the growth rate is reduced by 
only 14%. (See appendix A.) 

Second, the picture implies that the vortices amalgama€e by a basically 
inviscid process. For if turbulent diffusion or mixing is invoked during coales- 
cence, i t  can surely be expected to be operative during the intervening periods, 
leading to a continuous increase in the size of the vortex structures. This con- 
tradicts the notion that increases in the width of the mixing layer are due in 
the main part to the amalgamation. But if the amalgamation id basically inviscid, 
the strength of the vorticity in the vortex structures will remain constant because 
vorticity is conserved in two-dimensional inviscid flow. We are now led in turn 
to a further contradiction. For, 

where AU is the velocity jump across the mixing layer and K is the strength 
(i.e. circulation) of the vortex structures. Further, 

K I I  = AU, (4) 

K = $71.w62, ( 5 )  

where w is an average value of the vorticity in the structures, which are taken to  
be approximately circular. From (4) and ( 5 ) ,  

But according to the similarity law, both 1 and S grow linearly with x; hence w 
must decrease linearly with x. 

Thus the assumption that the amalgamation process is inviscid leads to a 
result which is not consistent with the similarity law. Now if w is to decrease the 
amalgamation must be accompanied by the ingestion of irrotational fluid into 
the vortex and this requires turbulent mixing and diffusion. 
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If turbulent processes act during amalgamation there seems no reason to 
suppose they do not act continually? and the purpose of the present note is to 
present an alternative physical mechanism for the disappearance of individual 
vortices in which continual growth by turbulent entrainment plays an essential 
role. Nor is pairing essential, though it would act to enhance the process to be 
described by reducing the separations of the vortices. The new explanation is 
conceptually simple and moreover leads with the use of reasonable simplifying 
assumptions to quantitative estimates. It is based on the analytical results of 
Moore & Saffman (1971).  In  particular, we use the result that a steady uniform 
rectilinear vortex of elliptical cross-section can exist in a uniform irrotational 
straining field only if 

e < 0.150, ( 7 )  

where w is the strength of the vorticity and e is the maximum rate of extension. 
When condition ( 7 )  is satisfied, the principal axes of the ellipse are aligned at 
45' to the principal rates of strain, and the ratio a/b of the major and minor axes 
satisfies the equation 

e w = _a b b  (?- 1)&+ 1 )  (;+ 1); .  

It can be shown that there are two values of a /b  for each value of e/w satisfying 
(7). One value is less than 2.9 and the other greater than 2.9. The more circular 
shape is stable to two-dimensional disturbances, whereas the other one is un- 
stable. It was not proved that non-elliptical, steady or periodic shapes could not 
exist when ( 7 )  is violated, but numerical experiments, where the vortex core was 
replaced by point vortices, showed a rapid dispersal of the vorticity when w 
was less than 6.7e. 

The deformation of a vortex in a straining field suggests that the array of 
circular vortices should be replaced as a simple model of the turbulent mixing 
layer by an array of elliptical vortices with their major axes parallel to the direc- 
tion of the flow, where each vortex is deformed by the irrotational straining 
field of the other vortices. The exact calculation of the shapes is a hard problem, 
but such refinement is unnecessary for our purposes. We shall simply assume 
that each vortex has the shape given by a single vortex in a uniform strain, this 
strain being that at the centre of each vortex when the velocity field of the other 
vortices is calculated by replacing them by point vortices. A simple calculation 
(see appendix A) then shows that 

e = ~n/61~, (9) 

and the principal rates of strain are aligned at 45' to the direction of flow, so 
that the vortices are aligned parallel to the flow. (The effect of finite channel 
width is to increase e by a negligibly small amount.) Now, 

K = mabw. (10) 

t We can discern no mechanism by which turbulence (and thus mixing) could be 
enhanced by the close approach of two like-signed vortices. When the gap between the 
vortices is much smaller than the radius of curvature the flow can be regarded as parallel, 
and standard results reveal that it is stable. 
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FIGURE 1. Position of the 80 line vortices used to represent the vortex core after time 
3.281A. Only one core of the infinite periodic array is shown. If  there is a line vortex a t  
(2, y), there is one a t  (z + nZ, y). 

Hence, 
elw = r2ab/Gl2. 

Using the result (7), we deduce that the array can exist as a steady state only if 

1 > 3*3(ab)&. (12) 

This result can be expressed in terms of the width S of the array, where S = 2b. 
Since alb + 2.9 for the critical state, condition (12) is equivalent to 

1 > 2.88. (13 )  

Thus our simple analysis gives a lower limit to the distance between the 
vortices, given their width. If the centres of the vortices are closer than 2.88, 
the mutual distortion can be expected to cause the vortices to disintegrate. We 
note, however, that the distance between the centres is slightly less than the 
major axis of the ellipses, so that, although the results of the simple model are 
suggestive, the analysis is being applied outside its strict range of validity. On 
the other hand, the result of this approach applied to the problem studied by 
Roberts & Christiansen agrees reasonably well with theirs (see appendix B). 

Moreover, we have tested the argument by examining numerically the motion 
of an array of initially circular vortices with radius r and separation 1. According 
to our theory, the vortices in the array will disintegrate when r > 0-31 and 
oscillate about an elliptical shape if r < 0.31. Each vortex was replaced by SO 
equal-strelfgth line vortices, whose positions at later times were obtained by 
integration of ordinary differential equations. The line vortices were initially 
at points of a square lattice inside the circumference of the vortex. Two cases 
were studied: rll = 0.32 and rl l  = 0.26. In  the former case, the vortices are pulled 
out at an angle close to 45" to the line joining the centres and are subsequently 
disrupted. The shape after time 3-28/h  is shown in figure 1. Note that reflexional 
symmetry about the origin was imposed to suppress Lamb instability of the 
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array.? For the latter case, the vortices were observed to oscillate with a period 
close to 3/h; this compares favourably with the theoretical prediction of 24/h  
given by equation (3.17) of Moore & Saffman (1971) (evaluated for an axis ratio 
of 1.7, which is appropriate for the strain rate at r / l  = 0.26). 

It is therefore with fair confidence that we apply the result (13) to the turbulent 
mixing layer. We envisage the vortex cores as containing turbulent fluid and 
therefore continuously growing by the entrainment of non-turbulent fluid 
across their boundaries. Such a process is consistent with the existence of a 
sharp boundary, and can be represented mathematically as a nonlinear diffusion 
process. Several of the recent phenomenological models of turbulent shear flow 
incorporate this idea of nonlinear diffusion to describe the spread of turbulence 
and predict the propagation of sharp fronts (for example, Saffman 1970). Hence 
the size of each vortex structure grows continuously with time, or equivalently, 
distance downstream, and 6 therefore increases. On the other hand, I is constant 
since the vortices are all convected with the same mean velocity. Thus the 
condition (13) will eventually be violated and a vortex will be torn apart by the 
action of its neighbours. 

The vortices are not, of course, exactly equal; nor for that matter do they 
form a spatially homogeneous array as considered in the analysis. There is 
therefore some physical as well as mathematical extrapolation in applying the 
analysis to the mixing layer. But the analysis suggests that any vortex which 
happens to be weaker than its neighbours will be destroyed whenever (13) is 
violated. When this happens, its vorticity will be ingested by its neighbours. 
Since the disappearance of a vortex and its amalgamation by a neighbour can 
be thought of as leading to a doubling of I ,  while 6 is increased only by a factor 
23 (since area is conserved), the process leads to anqther stable situation until 6 
for the new vortices grows large enough so that (13) is violated, when the process 
repeats. When a vortex disappears, there is no reason why its vorticity should be 
shared equally between its neighbours, and if most of the vorticity goes into 
one of its neighbours, the process may closely resemble the formation of a vortex 
pair which amalgamate, as was first discussed. 

Equation (13) gives a lower bound of 2-86 for the mean spacing i of the vortex 
structures and a corresponding upper bound of 2-9 for their axis ratio. However, 
6 is not a physicaIly well-defhed quantity and it is desirable to relate H to some- 
thing that is directly measurable. A suitable length is provided by the maximum 
slope of the mean velocity gradient through the layer. The mean shear d a f d y  
at a distance y from the centre-line is equal to w multiplied by the chance that 
a point is inside a vortex. A simple calculation shows that the fraction of a line 
y = constant inside the vortices is 

Then 
d o f a y  = f w .  

This ensures that the vorticity centroid of each core remains fixed and that pairing 
does not obscure the disruption. 
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From (4) and (lo), 

Hence 

D. W .  Moore and P. G. Saffman 

w = IAU/lrab. 

and the lower bound on 1 for a steady array of distorted vortices to exist is 3-56,. 
Our hypothesis is that individual vortices disappear by disruption and since 
this process must be continually taking place in order to preserve similarity, 
this lower bound is achieved. Thus we assert that 

Equation (20) is in reasonable agreement with the measured values reported 
by Brown & Roshko (1974), although it is perhaps slightly too large. But the 
agreement is entirely satisfactory in view of the drastic approximations that 
have been made and lends support to the belief that the physical mechanism 
proposed here is responsible for the disappearance of vortices as they are con- 
vected downstream. 

We do not assert that individual vortices necessarily grow linearly with dis- 
tance downstream as they increase by turbulent entrainment. In  fact, dimensional 
analysis suggests that the radius of a turbulent vortex should grow like the 
square root of time. The observed fact that the mean width grows linearly with 
distance requires that the mean width be determiued by the growth due to  
turbulent diffusion plus the increase in size when a vortex disintegrates and is 
absorbed by its neighbours. 

The present discussion is for a mixing layer in a homogeneous fluid. The 
qualitative mechanism should hold for mixing between streams of different 
densities, but the quantitative predictions are questionable. 

This work was made possible by a NATO research grant. 

Appendix A 
An array of line vortices each of strength K whose centres are the points whose 

co-ordinates are (nl, 0) relative to fixed rectangular axes produces a flow des- 
cribed by the complex potential 

where z is x + iy. Expanding for small z gives 
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so that the perturbing stream function is 

which is a plane strain of maximum extension rate 71~/61? as stated in (9). 
Next consider the vortices to be placed symmetrically between parallel rigid 

walls. Suppose that the walls are a t  y = h with the vortices located as before. 
The effect of the walls can be accommodated by adding onto (A 1) the complex 
potential due to an infinite system of image arrays and it is found that 

271 

Thus for small z 

7r2z2 712 ( -  l ) n + l  
w(z)  = -- 2 2 -  

271 iK [log ' - 612 - l2 sinh2 (nhn/Z) 

so that the perturbing stream function is 

1K71  

The infinite series is rapidly convergent unless h/l < 1 and when h/l = 1 the 
effect of the walls is merely to increase the distorting strain by about 44 %, an 
effect completely without significance in the present context. 

The effect of the walls on the stability of the array can also be determined. 
In  the mode of maximum growth rate the vorticesme displaced to the points 

nl + a(t) ( - 1 In, 

so that the disturbed array can be regarded as two parallel linear arrays each of 
spacing 21. This observation enables the velocity potential to be obtained from 
image arrays and using this potential to evaluate the velocity of one of the 
vortices leads, on linearizing in the complex disturbance amplitude a, to the 
equation 

where 
da*/dt = ( i~n/8P) ( (a  - a*) R + 2aS - (a  +a*) T>, (A 5) 

03 

B = 2 x cosech2 
n=O 

(A 6) 
W 

S =  1 + 2  2 sech2- 
n = l  

[ "1"I- J W 

T r= 2 x sech2 (n++)- 
n=O 

Solution of (A 5 )  shows that the array is always stable, and numerical evaluation 
of the series shows that the effect of the walls is not pract8ically significant. The 
results are shown in table 1, in which pvs.  l/h is given, where h = ,8~71/41~. 
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0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

TABLE 1 

1.000 
0.985 
0.884 
0.697 
0.493 
0.324 
0.201 
0.120 

Appendix B 
We consider the flow examined numerically by Roberts & Christiansen (1972), 

which consisted of two circular vortices, of equal strengths K and radii a, with 
centres a distance 1 apart. With the deformation neglected, the vortices rotate 
around one another with angular velocity Q = K/nZ2. Bring the system to rest 
by superposing an equal and opposite solid-body rotation. In  the new frame of 
reference, the vorticity inside each vortex is 

Near the centre of one of the vortices, the velocity field induced by the other 
vortex and the solid-body rotation has stream function (II: axis parallel and y 
axis perpendicular to the line of centres) 

Applying the analysis of Moore & Saffman (1971) in the manner used in the 
body of that paper, equations (2.14) and (2.16), we conclude that the circular 
vortex is deformed by the velocity field (B 2 )  into an ellipse of axis ratio 8 ( > 1), 
where 

the plus sign being taken if the major axis is along the line of centres and the minus 
sign if it  is perpendicular. There are no or two solutions in the former case, and 
one in the latter. The stability of these shapes to two-dimensional disturbances 
has been examined, and the only stable shape is the less elongated of the two 
solutions with major axis parallel to the line of centres, when these exist. 

Elementary algebra shows that (B 3), with the positive sign, has real roots 8 
greater than one onlv if 

Y 

98: - 28, + 3 
2 ( ? - 2 )  a2 > 28,- 1 3 

when 
36: - 6s: - ze, - i = 0. 
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0, is approximately 2-19 and is the critical axis ratio. The critical value of 1/2a 
is 1.43. This compares favourably with the numerical value of 1.7 suggested by 
Roberts & Christiansen (1972). 
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